
Virtualization Technology

Applied to Rootkit Defense

THESIS

Douglas P. Medley, Captain, USAF

AFIT/GCE/ENG/07-08

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCE/ENG/07-08

Virtualization Technology

Applied to Rootkit Defense

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Douglas P. Medley, B.S.C.E.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/07-08

Virtualization Technology

Applied to Rootkit Defense

Douglas P. Medley, B.S.C.E.

Captain, USAF

Approved:

/signed/ 6 Mar 2007

Maj Paul Williams, PhD (Chairman) date

/signed/ 6 Mar 2007

Dr. Rusty O. Baldwin (Member) date

/signed/ 6 Mar 2007

Dr. Gilbert L. Peterson (Member) date

AFIT/GCE/ENG/07-08

Abstract

This research effort examines the idea of applying virtualization hardware to

enhance operating system security against rootkits. Rootkits are sets of tools used

to hide code and/or functionality from the user and operating system. Rootkits can

accomplish this feat through using access to one part of an operating system to change

another part that resides at the same privilege level. Hardware assisted virtualization

(HAV) provides an opportunity to defeat this tactic through the introduction of a

new operating mode. Created to aid operating system virtualization, HAV provides

hardware support for managing and saving multiple states of the processor. This

hardware support overcomes a problem in pure software virtualization, which is the

need to modify guest software to run at a less privileged level. Using HAV, guest

software can operate at the pre-HAV most privileged level. This thesis provides a plan

to protect data structures targeted by rootkits through unconventional use of HAV

technology to secure system resources such as memory. This method of protection will

provide true real-time security through OS attack prevention, rather than reaction.

iv

Acknowledgements

I owe a debt of gratitude to my advisor, instructors, and classmates for assistance

in completing this thesis and the other requirements of the AFIT program. Your

support is greatly appreciated and will not be soon forgotten.

Douglas P. Medley

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

List of Abbreviations . x

I. Introduction . 1
1.1 Motivation . 1
1.2 Overview . 2
1.3 Research Statement . 3
1.4 Thesis Organization . 4

II. Literature Review . 5
2.1 Privilege Levels . 5

2.2 Malware . 6
2.3 Virtualization Technology 11

2.3.1 Intel Virtualization Technology 11

2.3.2 AMD Pacifica 14
2.4 Rootkits . 15

2.4.1 Hooking . 16

2.4.2 Run-time Patching 18

2.4.3 Layered Drivers 20

2.4.4 Direct Kernel Object Manipulation 21

2.4.5 Virtual Machine Based Rootkits 22
2.4.6 Rootkit Detection 23

2.5 Hardware Based Monitoring 25

2.5.1 CuPIDS . 25
2.5.2 Copilot . 27

III. Methodology . 29

3.1 Problem Background . 29

3.2 Hypothesis and Goals 33

3.2.1 Scope and Assumptions 34

3.2.2 Problem Scope 34

vi

Page

3.2.3 Assumptions . 34

3.3 Architecture . 34
3.4 Foreseen Challenges . 35

3.5 Summary . 37

IV. Implementation . 38

4.1 Hardware and Software Specifics 38

4.2 Enabling HAV . 39

4.3 Loading the OS to Non-root Operating Mode 40

4.4 Securing Targeted Structures 41

4.5 An Alternate Implementation 43

4.5.1 Duplicate OS Data in Hypervisor 43

4.5.2 Remove Structure from Guest OS 43
4.5.3 Create Autonomy 44

4.5.4 Comparisons . 44

V. Proposed Testing Strategy and Expected Results 45

5.1 Testing Methodology . 45

5.1.1 Functionality 45

5.1.2 Performance . 45
5.2 Expected Results . 46

VI. Conclusions and Future Work . 47
6.1 Conclusions . 47

6.1.1 Research Challenges 47

6.2 Future Work . 49

Appendix A. Model Specific Registers 52

A.1 IA32 VMX BASIC . 53
A.2 IA32 VMX PINBASED CONTROLS 54
A.3 IA32 VMX PROCBASED CTLS 54
A.4 IA32 VMX EXIT CTLS 55
A.5 IA32 VMX ENTRY CTLS 55
A.6 IA32 VMX MISC . 56
A.7 IA32 VMX CR0 FIXED0 and IA32 VMX CR0 FIXED1 57
A.8 IA32 VMX CR4 FIXED0 and IA32 VMX CR4 FIXED1 57
A.9 IA32 VMX VMCS ENUM 58

Appendix B. Kernel Modifications . 59

B.1 Locore.s . 59
B.2 Loadable Kernel Module 75

Bibliography . 79

vii

List of Figures

Figure Page

2.1. Type 0 Malware [18] . 7

2.2. Type 1 Malware [18] . 8

2.3. Type 2 Malware [18] . 9

2.4. Type 3 Malware [18] . 10

2.5. Hooking . 17

2.6. Patching . 19

2.7. Layered Drivers . 20

2.8. Direct Kernel Object Manipulation (DKOM) 22

3.1. Kernel with secured “core.” . 30

3.2. High Level Overview of HAV-enabled CuPIDS architecture. [19] 32

4.1. OS state after enabling HAV. 40

4.2. OS state after loading into non-root operating mode. 41

4.3. Final OS with protections in place. 42

4.4. Result of blending two OSs . 44

viii

List of Tables

Table Page

3.1. Hardware Memory Access Types 35

ix

List of Abbreviations

Abbreviation Page

HAV hardware assisted virtualization 2

AMD Advanced Micro Devices 5

VT Virtualization Technology 11

VM virtual machine . 12

VMM virtual machine monitor 12

VMCS Virtual Machine Control Structure 12

VCMB Virtual Machine Control Block 14

MSR model specific register . 14

GIF global interrupt flag . 14

CPU Central Processing Unit 15

SLB secure loader block . 15

TLB translation lookaside buffer 15

ASID application space ID . 15

SSDT system service descriptor table 17

IDT interrupt descriptor table 17

ISR interrupt service routine 19

DKOM Direct Kernel Object Manipulation 21

VMBR virtual machine based rootkits 24

IDS intrusion detections systems 25

CuPIDS Co-Processor-Based Intrusion Detection System 25

PCI peripheral component interconnect 25

SMP symmetric multi-processor 25

GCC GNU compiler collection 36

RIP instruction pointer register 40

DMZ de-militarized zone . 49

x

Virtualization Technology

Applied to Rootkit Defense

I. Introduction

1.1 Motivation

Malicious software presents a threat to anything that relies on computers. To-

day, the number of civilian business, government, and personal computers is ever

increasing as well as their interdependency. Modern malicious software,or malware,

employs clever tactics to remain undetected to accomplish whatever they were created

to do. Enter rootkits.

Rootkits are a collection of tools that allow a hacker to maintain privileged

access to an operating system once it has been compromised through removing traces

of intrusion and the rootkit itself. Rootkits are increasing in complexity, numbers,

and variety and their evolution is accelerating. According to a white paper released

by McAfee, “from 2000 to 2005, rootkit complexity grew by more than 400 percent,

and year-over-year, Q1 (quarter one) 2005 to 2006, complexity has grown over 900

percent.” [14] The threat is real, and understanding them is an important step in

keeping computer systems secure.

1

1.2 Overview

Rootkits employ tactics ranging from hiding files in the file system to removing

traces of target processes in the operating system. They make malware invisible to

the operating system and user, and render malware unremovable until the rootkit is

defeated. The majority of rootkits rely on the fact that access to one privileged part

of the operating system gives access to other parts of the operating system. This

works because most of the operating system operates at the most privileged hardware

level.

Hardware assisted virtualization (HAV) technology provides a privileged mode

of operation, allowing rootkits to use hardware to hide malware. What makes HAV

appealing to rootkits is the architectural design itself makes processes completely

unaware of their operation within a virtual environment. Although useful for software

taking advantage of this hardware, this is also ideal for rootkits trying to hide code

from an operating system or detection software. This research explores ways to take

this advantage away from rootkits by employing HAV to thwart both existing rootkits

as well as the new rootkits that target this technology.

To protect the data structures most commonly targeted by rootkits, any at-

tempted change to them causes the processor to fault into HAV root-mode for inspec-

tion. The protected part of the operating system, or core, would have the structure

stored in memory only it has access to, thus allowing it to either permit or deny the

change and return to un-privileged operation. One goal is to make this transition as

2

quick as possible, and transparent to the operating system. Since HAV is designed

to improve virtual machine performance, the architecture can support making this

protection seamless and efficient. In essence, this research puts part of the operat-

ing system into a privilege level higher than that available to current rootkits, and

occupies and protects that privilege level against the rootkits that target it.

1.3 Research Statement

The hypothesis of this research is that data structures targeted by rootkits can

be protected from existing rootkit exploits using hardware protections. The plans for

a prototype using HAV to secure a piece of memory is presented. This method of

protection is theoretically efficient compared to other hardware solutions to machine

monitoring as well as providing real-time security, through attack prevention, rather

than reaction.

The primary goal of this research is to explore the use of hardware assisted

virtualization in protection of operating system data structures targeted by rootkits.

Specifically, this research plans a prototype hybrid operating system taking advantage

of HAV in a security oriented manner to successfully stave off attacks from previously

successful rootkits the modify OS data structures. Success is measured by the machine

successfully preventing a rootkit-type attack from modifying a targeted data structure.

3

1.4 Thesis Organization

This chapter presents the motivation for this research, an overview, the research

statement, and the document’s organization. Chapter 2 describes prior research.

Chapter 3 presents the methodology this research uses to address the problem. Chap-

ter 4 presents the implementation details. Chapter 5 presents testing methodology

and expected results. Chapter 6 contains the conclusion as well as ideas for future

research.

4

II. Literature Review

T
his chapter provides background information on this research. Section 2.1 is

an overview of legacy privilege levels that most computer systems support

and with which most operating systems are designed. Section 2.2 reviews to malware

and presents a malware taxonomy. Section 2.3 presents information on the recently

released virtualization technologies from Intel and AMD. Section 2.4 provides infor-

mation about rootkits and the methods used to detect them. Finally, Section 2.5

provides an overview of two hardware based security systems.

2.1 Privilege Levels

Processors in modern computer systems operate at various privilege rings, or

levels, ranging from 0 to 3. Starting at level 3 with the least privilege, each level has in-

creasing privilege and control over hardware, with level 0 having the highest privilege.

Introduced by the Multics system, the purpose of this division is to allow an operat-

ing system to have more control over hardware than guest programs, which increases

system stability and security [12]. Although four levels are available, guest programs

traditionally ran at level 3 while the OS code operated at level 0 and was considered a

single entity and static. Security threats were not as abundant and easily spreadable

through the Internet. However, as technology advanced, OS’s became more dynamic

and adaptable. Now driver updates, hot-fixes, patches, and service packs commonly

modify OS’s, the software running at privilege level 0. Although convenient, the now

dynamic nature of OS’s has allowed malware to enter parts of the operating system

5

such as system call tables, process lists, and other run-time structures vital to secure

system operation. Having access to one part of the operating system that regularly

changes provides hardware privilege needed to modify any other part of the operating

system. For example, device drivers, which are changed frequently compared to other

parts of the operating system, have level 0 access and are often used as an avenue for

rootkit installation. Rootkits can use the level 0 privilege given to device drivers to

modify or bypass other parts of the operating system, which then have, at most, a

level playing field to detect or prevent them.

2.2 Malware

This section introduces malware and the methods to detect or thwart classes of

malware attacks. It also introduces the importance of malware stealth and transition

into higher levels of privilege.

Malware is a piece of code which changes the behavior of either the
operating system kernel or some security sensitive applications, without
a user consent and in such a way that it is then impossible to detect
those changes using a documented features of the operating system or the
application (e.g. API). [18]

Encompassing viruses, worms, trojans horses, back doors, spyware, botnets,

loggers, dialers, and other unlabelled software, malware is a very real threat to modern

computing. A recent paper by Joanna Rutkowska of COSEINIC Advanced Malware

Labs introduced a taxonomy for malware, sorted into classes ranging from 0 to 3. [18]

Type 0 malware is described as software that does not compromise existing

programs or operating system execution. It is its own sovereign process, and per-

6

Figure 2.1: Type 0 Malware [18]

forms malicious functions through standard interfaces. Type 0 malware include some

spyware, adware, and trojan horses. In general, most type 0 malware requires an

error on the user’s part, such as tricking the user to install and run software that

does something different or in addition to the advertised functionality. For example,

Internet browser pop-ups that advertise free adware scanning software when in fact

the software itself is adware. The region of operation for type 0 malware, the same

region as normal applications, is illustrated in Figure 2.1.

Type 0 malware can be detected through simple methods such as checking

running processes. The method of removal may vary as an operating system provides

more than one method for software to begin executing. For example, software can be

executed as the result of an entry in the system registry, or disguised as an add-on to

an existing program.

7

Figure 2.2: Type 1 Malware [18]

Type 1 malware is described as code “which modifies those resources which were

designed to be constant” [18]. For example most memory code sections of user software

as well as certain system structures are designed to remain relatively constant. Many

rootkits hide files by modifying these constants in executable code, and by hooking

other OS parts not usually subject to change, specifically OS system calls and similar

targets. Hooking is covered more in depth in Section 2.4. Figure 2.2 illustrates this

type of malware infection.

Detection of type 1 malware can be as simple as comparing the current exe-

cutable to a known good state. Detecting exactly how the code changed is a matter

of having the right definitions for the malware, but detection in general is not a diffi-

cult problem. It is simply knowing the code you currently have is not what you began

with.

8

Figure 2.3: Type 2 Malware [18]

Type 2 malware is categorized by its ability to modify data that is dynamically

changing such as function pointers, system calls, and data sections of executables as

shown in Figure 2.3. The infected areas are constantly changing anyways, so detecting

a malicious versus routine change is a difficult problem. This type of malware requires

defenders to examine how a process is behaving as opposed to simply inspecting

static code. This category of malware forces current malware detectors which are

inherently reactive, to solve the difficult problem of differentiating normal versus

abnormal behavior. Once recognized, the specific threat is studied and the system is

either patched to prevent infection or a fix is applied.

Type 3 malware is the newest and arguably the most difficult malware type

to combat. This type of malware is made possible by hardware assisted virtualiza-

tion. The key idea is that the malware can operate completely outside the infected

software’s reach as illustrated in Figure 2.4. Since HAV is designed to keep software

unaware it is running in a virtual state, malware controlling the HAV could keep the

9

Figure 2.4: Type 3 Malware [18]

rest of the system in a virtual state. There are no changes to the existing code at

all. This sort of malware would make it difficult or impossible for code to know the

malware exists, without an out-of-system investigator. Essentially, the original code

functions normally, unable to distinguish between the new virtualized environment

and the original one. Under the assumption that the user cannot operate outside the

existing operating system, such malware would be impossible to detect or remove.

Current technology allows for detection of type 3 software through bugs in the

virtual environment in which the infected software operates. This puts detectors at

a severe disadvantage, as logically the malware is not visible to the detecting code.

The only detection method available is to catch the side effects from running in a

virtual environment. Previously, software had to already be running in a virtual

environment or modified to do so for this type of infection to take place. With

hardware assisted virtualization, no changes to the target code is necessary and the

malware need only activate or take over the virtualization hardware. Through the

10

use of hardware assisted virtualization, defence against type 1 through 3 malware can

raise the bar for future attacks of this sort.

2.3 Virtualization Technology

Virtualization is not a cutting edge idea. It has been implemented in software

for years, but no implementation has been without quirks. Performance takes large

hits since the OS’s running in the virtual environments needed to be changed so they

can operate with reduced privileges. These modifications usually consist of reducing

the control over the hardware that guest OS’s have. Hardware assisted virtualization

alleviates this problem by letting the virtualized OS have direct control over hardware,

just not the hardware vital to control of the system. HAV increases performance by

removing a layer of software between the virtualized OS and the hardware. Whereas

prior virtualization schemes required a software interface between the virtual OS and

hardware, new systems using HAV give the virtual OS direct access to hardware.

HAV has been implemented by both Intel and AMD, and below is a description of

their first generation products.

2.3.1 Intel Virtualization Technology. Intel’s processor with VT (Intel’s

name for HAV) has two modes of operation. These modes operate differently in

Itanium and IA-32 architectures. This section will expand on the latter. The two

modes of operation are VMX root and VMX non-root.

Processor behavior in VMX non-root operation is restricted and modi-
fied to facilitate virtualization. Instead of their ordinary operation, certain

11

instructions (including the new VMCALL instruction) and events cause
virtual machine VM exits to the virtual machine monitor (VMM). Because
these VM exits replace ordinary behavior, the functionality of software in
VMX non-root operation is limited. It is this limitation that allows the
VMM to retain control of processor resources. [9]

Once VMX operation has been enabled, there are two commands to enter non-

root operation, VMLAUNCH and VMRESUME. VMCALL, or any other exit condi-

tions defined by the root mode software, exit non-root operation. Below are the brief

descriptions from Intel’s IA32 VT spec. [9]

• VMCALL: This instruction allows a guest in VMX non-root operation to call

the VMM for service. A VM exit occurs, transferring control to the VMM.

• VMLAUNCH: This instruction launches a virtual machine managed by the

(VMCS). A VM entry occurs, transferring control to the VM.

• VMRESUME: This instruction resumes a virtual machine managed by the

VMCS. A VM entry occurs, transferring control to the VM.

• VMXOFF: This instruction leaves VMX operation.

• VMXON: This instruction takes a single 64-bit source operand that is in mem-

ory. It causes a logical processor to enter VMX root operation and to use the

memory referenced by the operand to support VMX operation.

Each Virtual machine is described by a structure that contains the virtual pro-

cessor state, and the controls that govern non-root VMX operation. Named the

Virtual Machine Control Structure (VMCS), it specifies which instructions cause a

VM exit, whether and which exceptions cause VM exits, and data about the state of

12

the VM guest. It can only be modified while in VM root operation mode. Below is a

list of the VMX instructions for using a VMCS from Intel’s IA32 VT spec. [9]

• VMPTRLD: This instruction takes a single 64-bit source operand and makes

the referenced VMCS active and current, loading the current-VMCS pointer

with this operand and establishes the current VMCS based on the contents of

VMCS-data area in the referenced VMCS region.

• VMPTRST: This instruction takes a single 64-bit destination operand that is

in memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR: This instruction takes a single 64-bit operand that is in memory.

The instruction sets the launch state of the VMCS referenced by the operand to

clear, renders that VMCS inactive, and ensures that data for the VMCS have

been written to the VMCSdata area in the referenced VMCS region. If the

operand is the same as the current-VMCS pointer, that pointer is made invalid.

• VMREAD: This instruction reads a component from the VMCS (the encoding of

that field is given in a register operand) and stores it into a destination operand

that may be a register or in memory.

• VMWRITE: This instruction writes a component to the VMCS (the encoding

of that field is given in a register operand) from a source operand that may be

a register or in memory.

According to Intel, memory can be logically separated for root and non-root

modes of operation. This will ensure that any compromise of non-root mode code

13

cannot compromise the root mode structures. The Intel documentation mentions

several methods to perform this separation, however, the particular implementation

does not affect this research directly as long as the claim of separation is true.

2.3.2 AMD Pacifica. AMD’s implementation of hardware assisted virtu-

alization is known as Pacifica, AMD Virtualization (AMD-V), and most recently,

secure virtual machine (SVM). It provides hardware assistance to switch global pro-

cessor state between virtual machine monitors and guest operating systems. New

instructions, VMRUN, VMSAVE, and VMLOAD provide the VMM control of state

changes. A Virtual Machine Control Block (VCMB) stores the state of guest OS’s

while an address held by a model specific register (MSR) holds the VMM state. A

complete list of SVM instructions include: [2, 3]

• VMRUN: Starts the execution of a guest instruction stream.

• VMSAVE: Stores a subset of the processor state to a VCMB specified by rAX

register.

• VMLOAD: Loads a subset of a processor state from the specified VCMB.

• VMMCALL: This instruction causes a VMEXIT and is callable by guest OS’s.

• STGI: Sets the global interrupt flag (GIF) to 1. While GIF is zero, all external

interrupts are disabled.

• CLGI: Clears the GIF.

14

• SKINIT: Securely reinitializes the CPU, allowing for the startup of trusted soft-

ware (such as a VMM). The code to be executed after reinitialization can be

verified based on a secure hash comparison. SKINIT takes the physical base

address of the secure loader block (SLB) as its only input operand, in EAX.

• INVLPGA: Invalidates the translation lookaside buffer (TLB) mapping for a

given virtual page and a given application space ID (ASID).

These commands perform many functions formerly left up to VMM software.

Their are similarities between the AMD’s and Intel’s HAV implementations, most no-

ticeably the controlling structures, AMD’s VMCBs and Intel VMCSs. Both control

the operation of guest OS’s and are 4KB in size. AMD’s HAV does have slight differ-

ences compared to Intel’s in a few respects. Noticeable first, there is no instruction

to activate the hardware. It is enabled through a register, while on Intel chips, a

register must be changed in addition to an instruction to activate it. Also, Intel has

a few registers that need to match associated fields in the VMCS’s while the VMCS

has to check on it in hardware in AMD’s case. AMD allows A20 masking (it can be

disabled), while entering VMX mode on Intel chips disables it. Despite these small

differences, overall functionality is similar enough that both seem equally capable.

2.4 Rootkits

“A rootkit is a ‘kit’ consisting of small and useful programs that allow an at-

tacker to maintain access to ‘root,’the most powerful user on a computer.” [7] Rootkits

are not malicious nor do they provide a means of gaining root access. Rootkits pro-

15

vide the means for themselves as well as any other code to remain hidden from the

operating system as well as security software. They are difficult to protect against,

as they can run at the same privilege level as the operating system itself, giving them

access to the very code trying to detect them. The mechanisms used by rootkits

vary, and each must be dealt with differently. The following descriptions and catego-

rizations of these mechanisms are largely as described by Greg Hoglund and James

Butler in Rootkits: Subverting the Windows Kernel. [7] The most important thing

to remember about rootkits is that they can operate at the most privileged level of

security, and can thus do anything the OS can do on the target machine.

2.4.1 Hooking. Hooking is a mechanism rootkits use to hide files or code

running on a target machine. A hook is a small change to an existing function or table

that reroutes the execution of that function to the rootkit code located elsewhere. It

performs whatever tasks are required, and returns as if the original function had been

called. This section will discuss hooks at both the user level as well as the kernel

level.

Userland hooks often target operating system’s application programming inter-

faces (API’s), as most programs use the API’s to get information from the system.

Figure 2.5 illustrates the steps common in hooking. Step one of the hook is an al-

tered address in the table containing addresses of commonly used API’s. When that

function is called, the address of the hook is received by the calling application and

the attacker’s code is run either instead of or in conjunction with the original code.

16

Figure 2.5: Hooking

In step 2, the new code calls the original function. Step three is filtering the results

of that function and step 4 passes the requested information back to the calling ap-

plication. Rootkits can also hook the function itself. Using this method, the hook is

placed in the first few bytes of the function’s code, so that whenever the function is

called, even if the address of that function is changed, the hook will still work. This

method involves overwriting a small portion of the original function’s code, which is

saved and executed later so that the original function still operates correctly. These

hooks are, in general, easy to detect as their privilege level is less privileged than that

of the operating system and they modify verifiable data structures. These rootkits

operate at level 3 while the OS is still operating at level 0. Therefore, placing hooks

at the operating system level would be more advantageous for an attacker or rootkit

developer.

Hooking the kernel can prove to be more fruitful for an attacker, as the hooks and

associated code operate at the same privilege level as the operating system. The same

methods as userland hooks are used, but at the kernel level. Targets in the Windows

kernel include the system service descriptor table (SSDT), interrupt descriptor table

(IDT), and the I/O packet request table. The difference at the kernel level is that

protections on the tables must be bypassed in order to change them. However, these

17

tables need to be changed by the operating system occasionally, and the same methods

used by the OS to change them can be used by a rootkit as well. For example, there

are memory protections on the SSDT in many later versions of Windows (including

Windows XP and Windows 2003), but using a process “thoroughly documented by

Microsoft,” [7] these memory protections can be changed. The Microsoft process

was likely created to be able to make changes to the SSDT for legitimate problems or

optimizations to the OS. Since hooking is used by both malware creators and software

developers to change existing functionality, hooking will be around for a long time.

2.4.2 Run-time Patching. Run-time patching is a more complex and power-

ful tool compared to hooking. Its advantage over hooking is it is not as easily detected.

Whereas hooking modifies an address table or the first few bytes in a function to call

the desired code, run-time patching changes the function itself either in part or en-

tirely. Run-time patching overwrites part, or all, of the target function to change

its functionality. The difference between hooking and patching is while hooking only

jumps to the rootkit’s code and back, patching involves changing the function’s binary

and thereby the way it behaves. Although this may include jumping to rootkit code,

the required level of knowledge about the target function is much greater. Patches

can jump to the attacker’s code, or change the function’s binary if the changes can

fit in the original function’s memory space, as shown in Figure 2.6. Whereas hooks

leave the original function intact, patching does not.

18

Figure 2.6: Patching

Run-time patching is more complex as it requires in-depth knowledge about the

target. The attacker must find the target function in memory, and find the part of

the function to modify. Once found, the new code must be inserted, and the old

code relocated, as many times the original code must still be executed and the new

code only modifies the results of the original code. For instance, the list of running

processes or the list of files in a folder might be modified before returned to the

function asking for them.

Another form of patching involves patching entire tables to execute the same

code. This would be useful for monitoring all interrupts for example. This form of

patching is similar to hooking on a massive scale. In the case of interrupts, each

interrupt in the interrupt service routine (ISR) table is patched to call the same

rootkit code. Since each ISR has a different address, the patch calls the rootkit code,

which behaves like a normal function call, and returns before the far jump to the

original function.

On a whole, patching is a complex method of hooking, or can be viewed as a

different hooking strategy. It varies in functionality, and can be used on any function

in the operating system. Patching requires in-depth knowledge of the target, and is

more intricate in its methods of modification when compared to hooking. When used

19

Figure 2.7: Layered Drivers

properly, patching is one of the most powerful tools rootkits use to hide themselves

and their associated code. [7]

2.4.3 Layered Drivers. Another method rootkits use to intercept informa-

tion is through layered drivers. In the Windows operating system, drivers are serviced

sequentially, each with access to the same information, and the ability to modify it

before it is passed on [7]. This property makes them ideal for rootkits, as information

only needs to be modified as opposed to gathered directly. Once the desired infor-

mation is intercepted, be it key-strokes, or the list of files in a directory, the rootkit

excludes the information it wishes to hide before passing the information to the rest

of the drivers as Figure 2.7 illustrates.

Information on creating drivers is available to the developer community at large

as drivers are a commonly modified part of the operating system. One need only

read how certain drivers pass data in order to intercept information. For instance, if

one wishes to filter the contents of a CD-rom drive or USB device, an attacker can

20

read information about those drivers and their communication standards to assist in

writing their driver to modify or filter that information.

2.4.4 Direct Kernel Object Manipulation. Direct Kernel Object Manipula-

tion (DKOM) is a powerful method of gaining access to the objects, or structures,

of the operating system. These structures include the process list, call trees, driver

lists, port lists, and anything else the kernel tracks. It involves in-depth knowledge of

kernel objects, and is a danger to system stability if not executed properly. DKOM

is limited in that it can only target kernel objects contained in volatile memory be-

longing to the operating system. For instance, the list of files in the file system is not

a kernel object, and can therefore not be manipulated using DKOM.

The objects in the kernel are highly dependant on the version of the operat-

ing system, as the form, use and handling of objects changes between versions and

possibly between patches as well. However, OS version and patch information are

readily available via system calls and once gathered, the objects can be manipulated

to perform the rootkits duty of hiding processes, open network ports, and more. For

example, the list of driver entities is a doubly linked list, which is used for tracking and

is not traversed in normal driver operation. It is only a store of information, therefore,

the pointers of the entries before and after the target driver can be modified to remove

the targeted driver from the list entirely, shown in Figure 2.8. Then when the oper-

ating system or security software queries the list to look for unapproved drivers, the

targeted one is omitted. The list of active processes works similarly, however other is-

21

Figure 2.8: Direct Kernel Object Manipulation (DKOM)

sues arise such as having multiple processors with different process lists. What makes

DKOM so powerful is that it modifies kernel objects in such a way that the kernel

operates as usual, with different data. Since modified data changes frequently dur-

ing normal operation, detecting this kind of change is difficult. When used properly,

DKOM is one of the hardest mechanisms for rootkit detectors to detect.

2.4.5 Virtual Machine Based Rootkits. The recent introduction of virtual-

ization support in both AMD and Intel CPUs introduces another level of privilege.

To provide backwards compatibility, HAV is designed to be off by default, in which

case any OS not supporting the hardware would not know the difference. This means

that any privileged software can turn it on and gain a higher level of privilege. This

capability was first demonstrated by Joanna Rutkowska’s “blue pill” rootkit at at

Black Hat in August 2006 [18]. Demonstrated on AMD hardware using Windows

Vista, this rootkit showed that gaining access to unused hardware assisted virtual-

ization can allow a rootkit to gain control over a machine. Two other rootkits that

use this technique are Vitriol and Subvirt [13]. These hypervisor rootkits are the

hardest to detect as they are not part of the operating system at all. In her words,

“it’s possible to create a malware which could take the control of the whole operating

22

system, without changing a single byte in the system’s memory nor software visible

hardware registers!” [18]

2.4.6 Rootkit Detection. The current methods of rootkit detection can be

categorized into two groups, detecting presence and detecting behavior. In detecting

presence, the actual rootkit op-codes are searched for, while in detecting behavior,

behavior common to rootkits is detected. [7]

Three methods of detecting presence are described below in order from most

effective to most practical. The first, being the most effective, is the off-line investi-

gation of a hard-drive to look for rootkit files, and is the most effective way to detect

rootkits that store information on the hard-drive. The drawbacks to this method of

detection are the resources required to perform the analysis, and the off-line time

of the victim computer. Another method of detecting rootkits is similar to detect-

ing viruses, in that you scan the “rooms,” or places in memory targeted by known

rootkits. [7] The problem with this method is similar to virus scanners; they only

detect what is already been caught elsewhere, and therefore are a reactionary tool.

Similarly, a third method is to look for rootkit hooks, and has the same drawbacks as

the aforementioned method.

Detecting behavior is described as “a promising new area in rootkit detection”

and “perhaps the most powerful.” [7]. This method, simply stated, relies on catching

the operating system in a lie. For example, using an API and comparing the output

to what is known to be the real answer. The problem with this method, is it relies on

23

gathering information about the “real” answer through a means other than the API

being scanned, and a rootkit could be modified to alter the means that the “truth” is

received from. For example, if a detector used two methods of getting the process list,

and both happened to already be modified by a particular rootkit, then that rootkit

would go undetected.

In the case of virtual machine based rootkits (VMBR), the CPU’s hardware

assisted virtualization is activated by the rootkits. “Prevention against such malware

is to have a ‘good’ hypervisor, preferably built into the OS, which would stop the

malicious ones from loading.” [18] The rational being that if a good hypervisor is

operating, it provides the ability to protect the hardware available to VMBR’s. King

also uses the idea of a good hypervisor for detection rather than prevention. He refers

to the good hypervisor as a secure virtual machine monitor and states, “Running a

secure VMM does not by itself stop a VMBR, as a VMBR can still insert itself between

the VMM and the operating system.” [13] “Using a secure VMM, we implemented

an enhanced version of secure boot which can prevent VMBR installations.” [13] We

expand on this idea, by first developing a “good” hypervisor, then using it to secure

structures commonly targeted by traditional rootkits.

Overall, the detection of rootkits can be described as an “arms race” and de-

pends on which was created most recently, the rootkit or the detector. If a detector

is newer than the rootkit, the rootkit will likely be detected and the victory is for

the good guys. If the rootkit is newer than the detection tool, the bad guys win.

This situation is largely due to the level playing field provided by the binary use of

24

the privilege levels currently in use. Providing the OS with a more privileged level

to which rootkits do not have access gives the OS the advantage. The method of

providing this advantage is through novel use of technology recently released to aid

virtualization in hardware.

2.5 Hardware Based Monitoring

Hardware based monitoring and intrusion detections systems (IDS)to be covered

in this section include Co-Processor-Based Intrusion Detection System (CuPIDS) [19]

and Copilot [15]. CuPIDS is a software and hardware based non-symetric use of co-

processors for intrusion detection while Copilot is a peripheral component interconnect

(PCI) based solution. The advantages and drawbacks of these systems are described

and compared to the scheme proposed solution in this research.

2.5.1 CuPIDS. CuPIDS is an intrusion detection system designed to take

advantage of multiple processors for security. It divides the hardware resources into

production and security components as opposed to the traditional method of using

additional processors as more computing power for standard applications.

CuPIDS software is distinguished by its assignment of hardware in a symmetric

multi-processor (SMP) system solely to security. Having hardware dedicated to se-

curity allows CuPIDS to have real time monitoring and response to threats. It pairs

every CPU running production processes with shadow CPU dedicated to security.

Shadow CPUs run shadow processes, which are security monitoring processes, each a

25

counterpart of production processes on the production CPU. The shadow processes

access the production processes through the shared memory available in SMP archi-

tectures. CuPIDS uses event generators in modified production processes to detect,

thwart, and repair damage from attacks. These event generators can be written to

provide various amounts of information to shadow processes.

This real time information is one of many strengths of the CuPIDS system.

Other advantages include fault tolerance, configurability, adaptability, and scalability.

CuPIDS fault tolerance is shown through its capability of repairing damage from select

detected attacks as well as uncompromised protection after a system crash and reboot.

Configurability and adaptability come from the ability to load modified, or patched,

production or shadow processes. Scalability is similar in that the IDS grows as the

protected production processes all have associated shadow processes. The adaptable

nature of CuPIDS is the source of much of CuPIDS’ strength.

Drawbacks of the CuPIDS system include vulnerable communication, reduced

performance, and embedded design. CuPIDS communication is through messages

from the production to the shadow process through the kernel. CuPIDS provides no

protections of the kernel, leaving the message passing method vulnerable to attack.

The reduced performance drawback comes from reassigning half of the CPU’s from

performing production processes to security related tasks. The embedded design’s

drawback is that every piece of production software must have a security counterpart

and embedded event generators if it wishes to be protected. Although its advantageous

26

for a piece of software to be designed with security in mind, many times it is not the

case.

The CuPIDS system is similar to this research in that both are embedded,

however this research focuses on the kernel and operating system, and therefore no

need additional security software. Although this research can be applied to other parts

of the OS, it is not necessarily scalable in the same sense as CuPIDS. In addition, this

research is not designed to be as modifiable as it focuses on protecting unchanging

parts of the OS. Overall, this research provides a complimentary protection using

similar methods, specifically hardware dedicated to security.

2.5.2 Copilot. Copilot is a co-processor based kernel integrity monitor

specifically tested against rootkits [15]. It guards against rootkits by monitoring the

kernel through polling system memory. It verifies kernel integrity every thirty seconds

with less than a one percent degradation to performance.

Copilot was designed to forego reliance of a security system on an uncompro-

mised kernel. It is completely independent of the OS, being totally contained on a

PCI add-on card. This design provides Copilot its own network interface, from which

it can be remotely monitored and controlled by an administrator station. In tests

against twelve known rootkits, Copilot was successful in detection of all twelve within

thirty seconds of installation.

The limitations of copilot come from its current implementation. As it is a

PCI card, it cannot intervene in process execution when it detects malware in the

27

kernel. Also, since it is a polling system, race conditions exist where false positives

are possible if the system is modifying the currently polled memory. Also, since it

polls, if malware were to completely execute and return the kernel to its original

state between polls, the system could miss detection. Finally, if malware could keep

modified code out of system memory and in system cache, Copilot would not be able

to detect their presence.

Compared to Copilot, this research takes a different approach to kernel security,

preventing changes being made to the kernel as opposed to detecting them. Also,

many of the limitation of Copilot due to lack of control or insight into the processor

are solved by the security residing on the same chip as the running processes.

28

III. Methodology

T
his chapter presents the methodology used to address rootkits through in-

stallation prevention. The problem background, hypothesis and goals, and

predicted obstacles are covered.

3.1 Problem Background

Hardware assisted virtualization provides virtual processors to guest operating

systems via hardware, making the use of virtual processors more efficient than vir-

tualization software alone. Unlike previous virtualization solutions, minimal to no

modification is needed to get standard operating systems to operate in a virtual en-

vironment. Through modifying an OS to span both the root and non-root modes

of operation, we aim to secure OS data structures by controlling access to them.

Securing data structures commonly targeted by rootkits using HAV is accomplished

through processor faults, causing VM exits and root mode operation. Unlike the

intended use of HAV to control many operating systems, the OS has the structure

stored in memory to which only root mode has access, and returns the information

to the non-root portion of the OS. The goal is to make this transition automatic,

so that the return of the information appears transparent to the non-root portion of

the operating system. This modification essentially moves the data structure to the

root-level of the OS, giving it a higher level of security than where current rootkits

reside as shown in Figure 3.1.

29

Figure 3.1: Kernel with secured “core.”

Another method of securing parts of the OS in a HAV enabled system is moni-

toring the non-root portion of the OS through fault and exception events. This system

would not be as real-time in detection or prevention of unauthorized changes. Using

current technologies, a user would only be able to verify the integrity of certain mem-

ory segments when software running in the virtual environment triggered the core

of the OS. Before these triggers, the software running in the virtual environment has

control over the hardware, only letting the core of the OS execute when something has

gone awry. If malware were sophisticated enough to prevent the break into root-mode

operation, then this method of monitoring would be defeated. However, implementing

this polling method of monitoring would be simpler than similar systems that have

already been implemented, and the existing software only need be modified to trigger

HAV. This method overall could provide a detection capability similar to Copilot,

except with the capability to react as well.

30

Hardware assisted virtualization can also be modified to provide a capability

similar to the CuPIDS system, which was originally designed for multiple CPU sys-

tems. The root-mode operation of the CPU could host the CuPIDS shadow processes,

while the non-root mode operation of the CPU host the production process. The in-

tegrated nature of HAV could provide improved efficiency and provide more insight

into CPU operation. Through the memory structures used to save virtual processor

states, more in depth monitoring could be achieved. As stated in the dissertation

for the CuPIDS research, virtualization can provide finer granularity visibility into

the processor state. [19] A disadvantage is that this monitoring is not parallel but

interposing or interleaved. To solve this problem, multiple processors could be used.

The application of the CuPIDS architecture to a HAV enabled multi-processor

system has potential to provide the advantages of HAV without the disadvantages

described in the previous paragraph. Although not thoroughly covered, the Intel

documentation describes the capability to use HAV technology asymmetrically. [11]

HAV capability does not preclude software from controlling each processor in a unique

way. Although a difficult problem, a CuPIDS system could be built to span multiple

processors or cores, each running in different operating modes. One processor running

in root mode would run the shadow processes while a second processor runs the

production processes in non-root mode. The Shadow CPU would have complete

control over the production CPU as well as keeping the real-time monitoring capability

introduced by the CuPIDS system through access to system memory. The capability

added is the root-mode processor controlling and remaining secure from processes on

31

Figure 3.2: High Level Overview of HAV-enabled CuPIDS architecture. [19]

the production processor running in non-root mode. Control comes from the use of

HAV architecture, and security is provided through the mechanisms described in this

thesis. In addition, the control streams can be used for finer granularity insight into

the production processor’s state through inspection of the production process’ VMCS

or VMCB. The resulting architecture is displayed in Figure 3.2.

One could argue that new rootkits will simply infect the higher level of security,

but the introduction of the host OS’s privilege level provides the opportunity to

properly secure the mechanisms providing the improved security. In order to make

securing code that operates in the root mode of operation easier, a goal would be

to have it be as small and efficient as possible. The vision is to have a “core” of an

operating system that is highly secure, rarely modified, and capable of monitoring

the rest of the OS. The rest of the operating system, would still provide the flexibility

32

required of current operating systems, such as easily updated drivers, regular updates,

and reconfigurable API’s.

3.2 Hypothesis and Goals

The research hypothesis is that data structures targeted by rootkits can be

protected from existing rootkit exploits using hardware virtualization technology to

secure a portion of memory. This method of protection will prove efficient compared

to other previously mentioned hardware solutions to machine monitoring as well as

provide true real-time security, through OS attack prevention, rather than reaction.

The primary goal of this research is to explore the use of hardware assisted

virtualization in protection of operating system data structures targeted by rootkits.

Specifically, we use a prototype hybrid operating system, modified to take advantage of

HAV, in a security oriented manner to stave off an attack from a previously successful

rootkit. Success is measured by the system preventing a rootkit-type attack from

modifying a targeted OS data structure.

A second goal of this research is to increase efficiency in the use of hardware

in operating system security. This is accomplished by comparison of this systems

performance relative to an unmodified identical machine. Performance is based on

benchmarks that use any affected data structures. Another interesting comparison

is the performance degradation of the researched system to other forms of hardware

protection. This comparison is less concrete, as the level of protection robustness in

the various systems will not be equal in all cases.

33

3.2.1 Scope and Assumptions.

3.2.2 Problem Scope. This research applies to rootkits that target operating

system structures at privilege level 0. Userland rootkits are not addressed as in

general they are easier to detect or are counter-parts to a harder to detect kernel level

rootkits [7]. Specifically, this research examines rootkits that use direct kernel object

manipulation, or otherwise modify data structures in the kernel of an OS. Protecting

of a segment or page in memory will demonstrate the validity of this concept.

3.2.3 Assumptions. The assumptions of this research are listed below:

• The proposed production system is installed on an uncompromised system,

equivalent to an installation of an OS on a new machine.

• Privilege level 0 of a system can be compromised through current attacker meth-

ods and can not be trusted.

• There are no bugs, side effects, or undocumented features of the HAV used

to implement this research. The presence of these could introduce unknown

behavior and compromise the implementation of this research.

3.3 Architecture

The architecture proposed for this research is an operating system architecture

using additional privilege modes of HAV enabled processors. Traditional hardware

memory protections provide two modes of access, user (privilege level 3), and super-

visor (privilege level 0-2) [10]. The combination of traditional memory protections

34

Table 3.1: Hardware Memory Access Types

Process Privilege User Memory Supervisor Memory Kernel Core
Level Access Access Memory Access
User (3) R/W
Supervisor (0-2) R/W R/W R
Kernel Core (Root Mode) R/W R/W R/W

in addition to the protections provided by this research create a new memory access

model, shown in Table 3.1. The third row and column of the table are the new oper-

ating mode and memory protection type. How this type of protection is provided is

covered in Chapter 4.

Through the use of the new memory access type, kernel structures often read,

but rarely modified, can be read freely while protected against unauthorized writes.

Since this type of memory is reserved for structures not frequently modified, it can

be setup during OS installation, similar to reserving non-pageable kernel memory

space. The resulting operating system and applications could then become as shown

in Figure 3.1. Rootkits and other malware now must penetrate a new more privileged

operating mode of hardware in order to be most effective, creating a new challenge

for attackers.

3.4 Foreseen Challenges

The challenges mentioned in this section complicate the goal of creating an

OS that uses HAV in an application related to system security. They either affect

performance, capability, or implementation.

35

Current virtualization methods require a sizeable virtual machine monitor, or

host OS, capable of simulating hardware services for guest operating systems. This

affects the performance of software running in the virtual environment. A challenge

in this research is to keep the size of the code operating in root mode as small and

efficient as possible to allow the rest of the OS to operate optimally. In addition,

modification to un-protected parts of the OS are kept at a minimum as any code

operating at the non-root level is assumed to be compromisable. Performance of this

research will be affected by the size of the additional software layer, as it will slow the

response of commands. However, protecting data structures requires less code than

tampering with and/or tracking tampered structures.

Another challenge in implementing this system is the required manipulation of

an OS’s memory management system. OS memory management is complicated, and

modifying it while not damaging functionality is difficult. In addition, the following

considerations need to be addressed. The system needs to ensure that that memory

used for protection is not available as normal memory as it will cause unnecessary

faults and possibly break operating system operation. The protected data structure’s

memory will be accessed by the non-root code during attempted writes, and otherwise,

regular system operation continues as smooth as possible.

Using an emerging technology that is not well-defined or supported is a chal-

lenge. The lack of definitions or standards for HAV, make implementing this technol-

ogy unique. Complications also arise because the tools normally used for this kind of

development do not support the technology. For instance, the GCC 3.4.4 compiler,

36

does not define the HAV related instructions, making coding more difficult because

each command must be defined by the developer [5]. This situation creates more

opportunity for error, and puts the onus on the developer to have an understanding

of compilers and the new technology. Open source software also often needs to be

modified for compatibility, which also slows development.

3.5 Summary

This section describes the methods and architecture used by this research to

enable hardware protection for memory. Through HAV, a new memory access type

is introduced, guarded by the new operating mode of HAV-enabled processors. HAV

provides the opportunity to create a small, secure core of an OS in which critical data

can be secured. This core lays the foundations for a formal verification and validation

monitor which acts as a reference validation mechanism such as that described by

Anderson [4].

37

IV. Implementation

T
his chapter describes the implementation of the protection system. The imple-

mentation of an operating system that spans both the root and non-root oper-

ating modes provided by hardware assisted virtualization to provide security against

rootkits is covered. First, the specifics of the system is presented. Then the three

steps taken to implement the research are presented: enabling HAV, loading the OS

into non-root operating mode, and securing targeted structures. An advantage of

using these steps is each step will result in a working OS. These steps were not com-

pleted due to unanticipated problems in implementation details, and are discussed in

theory. In addition, an alternate implementation method is introduced.

4.1 Hardware and Software Specifics

This research is conducted using a laptop containing an Intel Core2 Duo T7200

processor and 2GB of RAM. One core is disabled as this research focuses on the

virtualization capabilities of the processor, and multiple cores may cause unnecessary

complication. Software chosen for this research is the FreeBSD 6.1 operating system,

containing the GCC 3.4.4 compiler. During the course of this research, the GCC

compiler was found to not support Intel VMX instructions, so the instructions were

passed to the processor via inline assembly as hexadecimal values. [5]

38

4.2 Enabling HAV

To use Intel’s implementation of HAV, enabling VMX operation requires these

pre-conditions be met: [11]

• CPUID has been used to check the capability of the processor.

• VMX capabilities and revision number from control registers and model-specific

registers (MSR) have been used to determine processor capability. These register

values and method of retrieving them are available in Appendix A.

• Control registers are checked to verify the processor is running in protected

mode with paging enabled.

• A VMXON region, aligned to a 4kb boundary, the same size as a VMCS is

created. Only the revision identifier need be set before use.

• Control register 4, bit 13, is set to allow VMX operation.

• Ensure the current processor operating mode meets the requirements of control

register 0 fixed bits.

Once these conditions are met, the instruction VMXON can be successfully

completed by the processor. Since virtual memory is already enabled by the time the

OS is running, either a physical address needs to be calculated from allocated non-

pageable memory, or the VMXON region needs to be allotted before virtual memory

is enabled. The latter route is more advantageous, as it is more in line with the

overall goal of this research. VMX operation is enabled during the boot process as

39

Figure 4.1: OS state after enabling HAV.

the majority of the operating system needs to be loaded into the non-root operation

mode. The OS source code modified to enable HAV is located in Appendix B. Also

located in Appendix B is the code for enabling VMX operation via a kernel loadable

module which can be configured to load at boot time with some modification. The

resulting interim system and hardware privilege levels is illustrated in Figure 4.1.

4.3 Loading the OS to Non-root Operating Mode

To load the OS to a non-root operating mode, a VMCS needs to be constructed.

The VMCS can be no larger than 4Kb, as determined by the value in bits 44:32 in

the IA32 VMX BASIC MSR. The hardware chosen for this implementation defined

its size as 1Kb. The method of gathering the MSR values and the recorded VMX

MSR’s values for this implementation are in Appendix A. Once created, all the initial

values for non-root operation are set using VMWRITE. One of the more important

fields is the RIP, the instruction pointer register. This along with the general purpose

register values determine what executes in the non-root state. To “push” the OS

into non-root operation, this code is executed as the OS boots, precluding any need

to alter any defined structures already loaded. Thus, all OS code is subsequently

40

Figure 4.2: OS state after loading into non-root operating mode.

executed in a non-root mode of operation. The VMCS will need to be configured

such that VM exits occur as little as possible since the events that cause VMexits

should immediately return the processor to the kernel in non-root mode. The resulting

interim OS and associated hardware privilege levels are illustrated in Figure 4.2.

4.4 Securing Targeted Structures

The securing of structures in the root operating mode, or core, of the OS can be

accomplished through hardware protections built into memory management. Page or

segment level protection is already available to current OS’s to protect memory. Two

methods are available so OS developers can choose between memory mapping modes.

For this research, page level protection is chosen as it compliments FreeBSD’s use of

page protected mode. Pages of memory are set aside for key data structures, and

protected through methods described in detail below. The resulting OS, illustrated

in Figure 4.3, is one with a secure core that protects structures commonly read by

the kernel.

The protections provided by this implementation come from the processor VM

exiting to root-mode operation anytime a process attempts a write to protected mem-

41

Figure 4.3: Final OS with protections in place.

ory. VM exits are caused a couple ways. First VMCS structure can be configured to

exit to root-mode on specific exceptions, page-fault exceptions included. Examples

include an unauthorized write to a read-only page, or an attempt to change the pro-

tections on memory pages. This kind of fault causes a VM exit to the core of the OS

where inspection of the VMCS structure can determine legitimacy of the operation.

The core temporarily changes the protections and performs the write, or returns con-

trol to the guest OS without making the requested changes. Second, root-mode can

be triggered by an attempt to change the control registers that enable page protec-

tion, or segment protection. Both can be configured to cause VM exits, where again,

the core of the OS can determine the nature of the change and either permit or deny

the request. Through these protections, the core of the OS retains exclusive control

over the protected memory segments. What distinguishes this from page protection

without HAV is that malware does not have access to the VMCS, and cannot stop a

VM exit. Nor can it access the memory that handles exceptions as it is also protected

by HAV.

42

4.5 An Alternate Implementation

An alternative to changing a single operating system to span both operating

modes is to take two operating systems and turn them into one. This could be

accomplished through the use of an existing HAV enabled hypervisor and guest OS.

They would be modified such that the hypervisor becomes the kernel “core” while

the guest OS becomes the non-root portion of the kernel. The steps to create such a

system are explained below.

4.5.1 Duplicate OS Data in Hypervisor. The first step of this implementa-

tion, after both the hypervisor and guest are installed, is duplicating the targeted data

structures in the hypervisor through facilities available to the hypervisor for reading

the memory space of a guest OS. Alternatively, with an intimate understanding of

the guest OS, the targeted data structures can be created from scratch and filled in

with data read from an operating guest OS later.

4.5.2 Remove Structure from Guest OS. The second step removes the tar-

geted data structure from the guest OS, causing it to fault to the hypervisor anytime

the data structure is referenced. Changes to the guest OS kernel is necessary for this

step, requiring thorough understanding of the guest OS kernel and memory manage-

ment system. Accomplishing this step will give the hypervisor the ability to monitor

the data structure, and intervene if necessary.

43

Figure 4.4: Result of blending two OSs

4.5.3 Create Autonomy. The last step step is to create autonomy in the

system, making it behave as a single OS. First, the system must boot the guest auto-

matically. Second, both systems need to be modified to have a memory space shared

between them such that the guest OS has read privileges, but not write privileges.

Lastly, any exits to the hypervisor are handled automatically which means the source

code of the hypervisor would need to be modified. Xen is a HAV enabled hypervisor

and was studied to aid this research. Xen’s source is available to the public, easing

the difficulty in making changes to it [17]. Once exits are handled autonomously, the

system will behave as a single OS and the blending is complete. Figure 4.4 illustrates

the resulting system.

4.5.4 Comparisons. The main advantage of this method is that it does

not start from scratch for the core of the OS. Another advantage is the hypervisor

can provide a good platform for adding functionality in the future. However, two

operating systems are modified instead of one and code running at the root level is

much larger, making it less efficient and less secure due to size and complexity. The

protection provided by this implementation is the same as the first implementation.

44

V. Proposed Testing Strategy and Expected Results

5.1 Testing Methodology

The system described in this research would be tested for functionality and

performance. Although functionality is the focus of this research, performance plays

a factor in determining its practicality.

5.1.1 Functionality. The tests for functionality are pass/fail in that the

protection either succeeds in preventing a write or fails. Memory pages are available

to be read from non-root operating mode of the kernel, making the first functionality

test simple. A data structure from a protected memory page is read, and then written

to. Another read of the structure determines if the protection succeeded. Other

functionality tests include attempts to change protections on memory pages as well

as attempts to change control registers to disable memory protection completely.

Lastly, techniques of overcoming traditional memory protection would also be tested.

5.1.2 Performance. The performance tests of this system should be mea-

sured by comparing a modified and unmodified OS running on the same hardware.

Since FreeBSD kernels are loadable from a boot prompt, performing these tests on

the same machine is simple. First, a series of memory reading and writing bench-

marks would be run repeatedly on a specified data structure in the unmodified OS

to determine a baseline system performance for memory reads, repeated for memory

writes, and a combination of each. The same tests would then be performed on the

45

modified system with the data structure loaded in to protected memory. Standard

statistical analysis would be applied to determine performance losses.

5.2 Expected Results

It is expected that the protection system proposed in this research will pass

every category of functionality testing, as the results of the actions taken to test

functionality are well documented in the processor documentation. Any failure of

functionality testing would likely be an implementation mistake as opposed to a flaw

in the design of system.

Performance testing is less predictable since the performance of HAV technolo-

gies has not been well documented. Intel published an article about performance

improvements for Xen virtualization, but the results are not able to be directly ap-

plied. [6] Read performance is expected to be near or at that of an unmodified system

since there are no VMexits, and the process has direct control over memory. The tests

conducted by Intel indicate memory performance is the same in root and non-root

mode [6]. However, the write performance for this research is expected to be much

worse because a VMexit occurs for every write. The cost to switch in and out of root

mode operation is anticipated to be the largest cost of performance. Since the switch

takes place completely in hardware, the results of this test would be the most inter-

esting, albeit unpredictable. The results of performance testing would also provide

insight into the performance cost of HAV virtual processor context switching.

46

VI. Conclusions and Future Work

T
his chapter discusses the conclusions of this research as well as possibilities for

future research either related to or following on to this research.

6.1 Conclusions

This research provides insight into the use of the emerging hardware assisted

virtualization technology for security. Through the use of a processor operating modes

designed for virtualization, key OS data structures can be secured through hardware

memory protections. These protections are particularly useful in rootkit defense since

rootkits often target OS structures. Though not implemented, the proposed system

can provide a platform from which more robust protection can be securely built upon.

The protected core of the OS can be expanded to not only prevent tampering with

OS structures, but provide secure monitoring of OS and application activity. This

research furthers the idea that computer defense can be precautionary instead of

reactionary. Ideas for future work in this area are presented in the future work section.

6.1.1 Research Challenges. This research presented many implementation

challenges. First, documentation on the technology was not readily available when

this research began. The initial documentation on the Intel HAV implementation

was not as thorough as the documentation released once the research was underway.

Specifically, it had not been integrated into the software developers guide or system

programming guide. The release of these documents helped progress the research.

Documentation for the AMD implementation of HAV was similar in that after initial

47

release, documentation was scarce, and made more thorough and available once the

research was underway.

Implementation support for emerging technology is not readily available. Ex-

amples of code that used the HAV technology and tools that supported HAV were

few, making implementation details cumbersome. For example, compiler support was

unavailable until this research was underway, and once available, the new compiler

had to be inspected to determine if it could be used. In general, when dealing with

emerging technologies, one must constantly look for newly developed support, which

creates more workload when compared to research which is not affected by the release

of a new tool.

Another challenge is the breadth and depth of understanding required for this

research implementation. For this research, one must understand OS functionality,

memory management, hardware architecture, virtual machine monitors, assembly and

source level programming, and hardware memory management protections. In a

commercial environment, there would be experts each knowledge area. In a research

environment, one must have detailed knowledge in all areas as each is either modified

or used in an non-standard way to accomplish this research. Unpreparedness in regard

to this requirement is one reason the implementation of this research is incomplete.

In summary, one must overcome unique and challenging hurdles when relying

on emerging technologies to conduct research. The rapidly changing set of available

48

resources creates a dynamic environment that challenges the researcher to adapt and

incorporate new information throughout the course of the research.

6.2 Future Work

Intel has developed a new, directed IO feature for future HAV chips, referred

to as VT-D, which allows direct assignment of devices to guest VMs. This addition

to the current VT capabilities can further reduce the burden of code running in

root-mode. Selected IO devices can be handled directly by code operating in non-

root mode allowing for more flexibility in protection. Non-critical devices can be

handled by non-root code, while key devices are still managed by the root level code

as necessary. Specifically, for networked applications, non-root code could be used as

a de-militarized zone (DMZ) of sorts, taking the brunt of an attack while the core of

the OS remains secure. This idea is similar to the vPro platform concept introduced

by Intel. [8]

Intel introduced vPro, a technology which provides a platform to enterprize

systems where computer fleet support is more efficient through remote management.

With respect to security, it provides improved security through allowing remote man-

agement consoles to directly control security updates and network traffic. It also

provides a framework for virtual appliances which can be configured remotely and

operate in the root-mode of operation, out of reach of the average user. Although

no-doubtably providing more security, it appears to be a mechanism of enforcing cur-

rent security technologies and policies more than a new security technology itself.

49

Currently software exists that can inventory and scan computers remotely, and this

technology moves that function from software to hardware and makes it more robust.

The adaptation of a CuPIDS type system on a HAV enabled multi-processor

architecture could have a synergistic effect as covered in Chapter 3. One processor or

core running in root mode could run the shadow processes while a second processor

or core runs in non-root mode with the production processes. The Shadow CPU

would have complete control over the production CPU as well as keeping the real-

time monitoring capability introduced by the CuPIDS system. It would offer more

detailed insight into processor state through the VMCS or VMCB which may be used

in place of or in conjunction with event streams. It should allow quicker response to

attacks with less system performance degradation. The application of this research to

multiple processor platforms could provide a secure method communicating between

the processes, desired by the original CuPIDS system. [19]

This research could be continued to determine the advantages of a single OS that

span both operating modes. With the introduction of Intel’s vPro technology, this

research may be leveraged to better understand the interaction between the hardware

operating modes, in order to leverage HAV for a new kind of security mechanism.

This OS would also provide insight into code running in root-mode operation, for the

purposes of creating a thin hypervisor, or hypervisor rootkit. Thin hypervisors and

hypervisor rootkits can provide proactive security instead of waiting to react to an

exploit.

50

A tangential topic for future research is the adaptation of an architecture to

support a CPU security system using two operating modes. Dedicated memory to

support the second mode of operation, or a faster way of loading and unloading

processor state would be useful since switching processor states will likely be a large

source for performance gains with other possible applications as well. A shift in

thinking from security as an afterthought to a requirement of new systems gives

developers the opportunity to shape the design of system hardware and software.

51

Appendix A. Model Specific Registers

T
his appendix lists and explains the model specific registers related to HAV

for the chosen Core2 processor. Explanations are directly from the Intel 64

and IA-32 architectures Software Developer’s Manual. [11] The values read from the

registers follow each explanation in parenthesis and are given in hex. Each value was

read using the following code snippet (a system call kernel loadable module modified

from the example packaged with FreeBSD was used to deliver this code):

u32 reg_edx;

u32 reg_eax;

u32 vmxmsr_index = 0x3A;

static int hello (struct thread *td, void *arg) {

/*read the MSR */

__asm("movl %2, %%ecx; rdmsr; movl %%edx, %0; movl %%eax, %1;"

:"=r"(reg_edx),"=r"(reg_eax) //output

:"r"(vmxmsr_index) //input

: "%ecx","%edx","%eax"

);

printf ("vmxmsr_index = %u \nedx register = %u \n eax register =

52

%u\n",vmxmsr_index,reg_edx,reg_eax);

}

A.1 IA32 VMX BASIC

• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

(0x7)

• Bits 44:32 report the number of bytes that software should allocate for the

VMXON region and any VMCS region. It is a value greater than 0 and at most

4096 (bit 44 is set if and only if bits 43:32 are clear). (0x400)

• Bit 48 indicates the width of the physical addresses that may be used for the

VMXON region, each VMCS, and data structures referenced by pointers in

a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions).

If the bit is 0, these addresses are limited to the processor’s physical-address

width.1 If the bit is 1, these addresses are limited to 32 bits. This bit is always

0 for processors that support Intel 64 architecture and is always 1 for processors

that do not support Intel 64 architecture. (0x0)

• Bit 49 reports whether the processor supports the dual-monitor treatment of

system-management interrupts and system-management mode. This bit is al-

ways read as 1. (0x1)

• Bits 53:50 report the memory type that the processor uses to access the VMCS

for VMREAD and VMWRITE and to access the VMCS, data structures refer-

53

enced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas

for VMX transitions), and the MSEG header during VM entries, VM exits, and

in VMX nonroot operation. The first processors to support VMX operation use

the write-back type. Software should map all VMCS regions, referenced data

structures, and the MSEG header with the indicated memory type. (0x6)

• The values of bits 47:45 and bits 63:54 are reserved and are read as 0.

A.2 IA32 VMX PINBASED CONTROLS

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit

X in the pin-based VM-execution controls is 0 and bit X is 1 in this MSR. (0x16)

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit

X in the pin-based VM-execution controls is 1 and bit 32+X is 0 in this MSR.

(0x1f)

A.3 IA32 VMX PROCBASED CTLS

The IA32 VMX PROCBASED CTLS MSR (index 482H) reports on the allowed

settings of the processor-based VM-execution controls.

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit

X in the processor-based VM-execution controls is 0 and bit X is 1 in this MSR.

(0x401e172)

54

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit

X in the processor-based VM-execution controls is 1 and bit 32+X is 0 in this

MSR. (0x77b9fffe)

A.4 IA32 VMX EXIT CTLS

The IA32 VMX EXIT CTLS MSR (index 483H) reports on the allowed settings

of the VM-exit controls.

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit

X in the VM-exit controls is 0 and bit X is 1 in this MSR. (0x36dff)

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit

X in the VM-exit controls is 1 and bit 32+X is 0 in this MSR. (0x3efff)

A.5 IA32 VMX ENTRY CTLS

The IA32 VMX ENTRY CTLS MSR (index 484H) reports on the allowed set-

tings of the VM-entry controls.

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit

X in the VM-entry controls is 0 and bit X is 1 in this MSR. (0x11ff)

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit

X in the VM-entry controls is 1 and bit 32+X is 0 in this MSR. (0x1fff)

55

A.6 IA32 VMX MISC

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-

tation: - Bit 6 reports (if set) the support for activity state 1 (HLT). - Bit 7

reports (if set) the support for activity state 2 (shutdown). - Bit 8 reports (if

set) the support for activity state 3 (wait-for-SIPI). If an activity state is not

supported, the implementation causes a VM entry to fail if it attempts to es-

tablish that activity state. Note that all implementations support VM entry to

activity state 0 (active). (0x7)

• Bits 24:16 indicate the number of CR3-target values supported by the processor.

This number is a value between 0 and 256, inclusive (bit 24 is set if and only if

bits 23:16 are clear). (0x3)

• Bits 27:25 is used to compute the recommended maximum number of MSRs

that should appear in the VM-exit MSR-store list, the VM-exit MSR-load

list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of

IA32 VMX MISC is N, then 512 * (N + 1) is the recommended maximum

number of MSRs to be included in each list. If the limit is exceeded, undefined

processor behavior may result (including a machine check during the VMX tran-

sition).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.

(0x0)

• Bits 5:0, bits 15:9, and bits 31:28 are reserved and are read as 0.

56

A.7 IA32 VMX CR0 FIXED0 and IA32 VMX CR0 FIXED1

The IA32 VMX CR0 FIXED0 MSR (index 486H) and IA32 VMX CR0 FIXED1

MSR (index 487H) indicate how bits in CR0 may be set in VMX operation. They

report on bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX

operation. If bit X of IA32 VMX CR0 FIXED0 is 1, then that bit of CR0 is fixed to

1 in VMX operation. Similarly, if bit X of IA32 VMX CR0 FIXED1 is 0, then that

bit of CR0 is fixed to 0 in VMX operation. It is always the case that, if bit X is 1 in

IA32 VMX CR0 FIXED0, then that bit is also 1 in IA32 VMX CR0 FIXED1; if bit X

is 0 in IA32 VMX CR0 FIXED1, then that bit is also 0 in IA32 VMX CR0 FIXED0.

Thus, each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in

both MSRs), or flexible (0 in IA32 VMX CR0 FIXED0 and 1 in IA32 VMX CR0 FIXED1).

• IA32 VMX CR0 FIXED0 = 0x80000021

• IA32 VMX CR0 FIXED1 = 0xffffffff

A.8 IA32 VMX CR4 FIXED0 and IA32 VMX CR4 FIXED1

The IA32 VMX CR4 FIXED0 MSR (index 488H) and IA32 VMX CR4 FIXED1

MSR (index 489H) indicate how bits in CR4 may be set in VMX operation. They

report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX opera-

tion. If bit X of IA32 VMX CR4 FIXED0 is 1, then that bit of CR4 is fixed to 1 in

VMX operation. Similarly, if bit X of IA32 VMX CR4 FIXED1 is 0, then that bit

of CR4 is fixed to 0 in VMX operation. It is always the case that, if bit X is 1 in

57

IA32 VMX CR4 FIXED0, then that bit is also 1 in IA32 VMX CR4 FIXED1; if bit X

is 0 in IA32 VMX CR4 FIXED1, then that bit is also 0 in IA32 VMX CR4 FIXED0.

Thus, each bit in CR4 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in

both MSRs), or flexible (0 in IA32 VMX CR4 FIXED0 and 1 in IA32 VMX CR4 FIXED1).

• IA32 VMX CR4 FIXED0 = 0x2000

• IA32 VMX CR4 FIXED1 = 0x27ff

A.9 IA32 VMX VMCS ENUM

The IA32 VMX VMCS ENUM MSR (index 48AH) provides information to as-

sist software in enumerating fields in the VMCS. Each field in the VMCS is associated

with a 32-bit encoding which is structured as follows:

• Bits 31:15 are reserved (must be 0).

• Bits 14:13 indicate the field’s width.

• Bit 12 is reserved (must be 0).

• Bits 11:10 indicate the field’s type. (0x0)

• Bits 9:1 is an index field that distinguishes different fields with the same width

and type. (0x16)

• Bit 0 indicates access type. (0x0)

58

Appendix B. Kernel Modifications

T
his appendix contains sections of code from the locore.s file and a kernel load-

able module. Locore.s is modified to enable HAV operation, Intel VT-x in this

case, during the boot sequence. Large unchanged or uncommented sections of code

are replaced with the line “.....Removed for Brevity.....”

B.1 Locore.s

.....Removed for Brevity.....

* from: @(#)locore.s 7.3 (Berkeley) 5/13/91

* $FreeBSD: src/sys/i386/i386/locore.s,v 1.186 2005/05/16 09:47:53 obrien Exp $

*

* originally from: locore.s, by William F. Jolitz

*

* Substantially rewritten by David Greenman, Rod Grimes,

* Bruce Evans, Wolfgang Solfrank, Poul-Henning Kamp

* and many others.

*

*

* EDITED BY CAPT MEDLEY, AFIT FEB 07

59

* PURPOSE: enable vmx operation and VMX-based memory protections

* NOTE: comments to better understand the code are insterted as well

* to mark major landmarks in the code. They are prefixed

* and concluded with the following *_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*

*/

.....Removed for Brevity.....

/*_*

The following globals are only placeholders for values to be later

defined by the create_pagetables function. They are physical

addresses of the various structures.

_/

/*

* Globals

*/

.data

60

ALIGN_DATA /* just to be sure */

.space 0x2000 /* space for tmpstk - temporary stack */

tmpstk:

.globl bootinfo

bootinfo: .space BOOTINFO_SIZE /* bootinfo that we can handle

*/

.globl KERNend

KERNend: .long 0 /* phys addr end of kernel (just after

bss) */ physfree: .long 0 /* phys addr of next free page

*/

/*_*/

/* BEGIN CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

.globl VMXphys

VMXphys: .long 0 /*phys addr of VMXarea */

/*_*/

/* end CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

61

#ifdef SMP

.globl cpu0prvpage

cpu0pp: .long 0 /* phys addr cpu0 private pg */

cpu0prvpage: .long 0 /* relocated version */

.globl SMPpt

SMPptpa: .long 0 /* phys addr SMP page table */ SMPpt:

.long 0 /* relocated version */ #endif /* SMP */

.globl IdlePTD

IdlePTD: .long 0 /* phys addr of kernel PTD */

#ifdef PAE

.globl IdlePDPT

IdlePDPT: .long 0 /* phys addr of kernel PDPT */ #endif

#ifdef SMP

.globl KPTphys

#endif KPTphys: .long 0 /* phys addr of kernel page

tables */

.globl proc0kstack

62

proc0uarea: .long 0 /* address of proc 0 uarea (unused)*/

proc0kstack: .long 0 /* address of proc 0 kstack space

/ p0upa: .long 0 / phys addr of proc0 UAREA

(unused) */ p0kpa: .long 0 /* phys addr of proc0’s

STACK */

vm86phystk: .long 0 /* PA of vm86/bios stack */

.globl vm86paddr, vm86pa

vm86paddr: .long 0 /* address of vm86 region */ vm86pa:

.long 0 /* phys addr of vm86 region */

#ifdef PC98

.globl pc98_system_parameter

pc98_system_parameter:

.space 0x240

#endif

/**

*

* Some handy macros

63

*

*/

/*_*

The following function (R(foo)) gives the physical address of an

address by subreacting the Kernel Base address from it (0xC0000000

in my case)

_/

#define R(foo) ((foo)-KERNBASE)

/*_*

The following macro moves the physfree variable up the address

space by adding the product of the page size to the current "next

free address." I.E., physfree = physfree + (PAGE_SIZE * numpages)

In this case, numpages = foo. It also leaves the old location of

the next free space in register esi to be used as a base pointer

to the allocated memory space.

_/

#define ALLOCPAGES(foo) \

64

movl R(physfree), %esi ; \

movl $((foo)*PAGE_SIZE), %eax ; \

addl %esi, %eax ; \

movl %eax, R(physfree) ; \

movl %esi, %edi ; \

movl $((foo)*PAGE_SIZE),%ecx ; \

xorl %eax,%eax ; \

cld ; \

rep ; \

stosb

/*_*

The following macros are used to write the kernel page tables

_/

/*

* fillkpt

* eax = page frame address

* ebx = index into page table

* ecx = how many pages to map

* base = base address of page dir/table

* prot = protection bits

65

*/

#define fillkpt(base, prot) \

shll $PTESHIFT,%ebx ; \

addl base,%ebx ; \

orl $PG_V,%eax ; \

orl prot,%eax ; \

1: movl %eax,(%ebx) ; \

addl $PAGE_SIZE,%eax ; /* increment physical address */ \

addl $PTESIZE,%ebx ; /* next pte */ \

loop 1b

/*

* fillkptphys(prot)

* eax = physical address

* ecx = how many pages to map

* prot = protection bits

*/

#define fillkptphys(prot) \

movl %eax, %ebx ; \

shrl $PAGE_SHIFT, %ebx ; \

fillkpt(R(KPTphys), prot)

66

.text

/*_*

This is the actual start of the code that will execute. Think of

it as a main in a C program

_/

/**

*

* This is where the bootblocks start us, set the ball rolling...

*

*/

NON_GPROF_ENTRY(btext)

.....Removed for Brevity.....

/*_*

These next two calls are defined lower in this file, one must note

that before now, the CPU does not have paging enabled, is running

67

in physical address spaces, and the kernel is at the bottom of

physical memory. Space for the VMXON region as well as the VMCS

for the OS are defined within the create_pagetables function.

_/

call identify_cpu

call create_pagetables

/*

* If the CPU has support for VME, turn it on.

*/

testl $CPUID_VME, R(cpu_feature)

jz 1f

movl %cr4, %eax

orl $CR4_VME, %eax

movl %eax, %cr4

1:

/* Now enable paging */ #ifdef PAE

movl R(IdlePDPT), %eax

movl %eax, %cr3

movl %cr4, %eax

orl $CR4_PAE, %eax

68

movl %eax, %cr4

#else

movl R(IdlePTD), %eax

movl %eax,%cr3 /* load ptd addr into mmu */

#endif

movl %cr0,%eax /* get control word */

orl $CR0_PE|CR0_PG,%eax /* enable paging */

movl %eax,%cr0 /* and let’s page NOW! */

pushl $begin /* jump to high virtualized address */

ret

/* now running relocated at KERNBASE where the system is linked to

run */ begin:

/*_*/

/* BEGIN CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

/* set CR4[13] to 1 to enable VMX operation */

movl %cr4,%ecx /*read current CR4 value */

orl $0x2000,%ecx /*set bit 13*/

movl %ecx, %cr4 /*set it in the register */

69

/* set flags in the CR0 register according to IA32_VMX_CR0_FIXED0

and IA32_VMX_CR0_FIXED1 */

movl %cr0,%ecx /*read current CR0 value */

orl $0x80000021,%ecx /*set bits 31,6, and 0*/

movl %ecx, %cr0

/* set the VMXon region revision identifier, 7 in this case */

movl R(VMXphys), %ecx

movl $0x7, (%ecx)

/*start of code to call vmxon though it’s not defined*/

xorl %ebx,%ebx /* zero out the ebx register (used for de bugging*/

pushl $0x00000000 /*push the high 32 bits of 64 bit operand on to stack*/

pushl R(VMXphys) /*push lower 32 bits of operand on stack */

leal 4(%esp), %eax /*load effective address of the high 32 bits*/

.byte 0xf3,0x0f,0xc7,0x30 /*execute the VMXON instruction */

setc %bl /*check the flag for successful vmxon */

popl %ecx /*remove the 2 operands from the stack */

popl %ecx

.byte 0x0f,0x01,0xc4 /*vmxoff to cause crash if vmxon not successful */

movl $0xFAC50000, %ebx

/*_*/

/* end CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

70

/*_*/

/* set up bootstrap stack */

movl proc0kstack,%eax /* location of in-kernel stack */

/* bootstrap stack end location */

leal (KSTACK_PAGES*PAGE_SIZE-PCB_SIZE)(%eax),%esp

xorl %ebp,%ebp /* mark end of frames */

#ifdef PAE

movl IdlePDPT,%esi

#else

movl IdlePTD,%esi

#endif

movl %esi,(KSTACK_PAGES*PAGE_SIZE-PCB_SIZE+PCB_CR3)(%eax)

pushl physfree /* value of first for init386(first) */

call init386 /* wire 386 chip for unix operation */

/*

* Clean up the stack in a way that db_numargs() understands, so

71

* that backtraces in ddb don’t underrun the stack. Traps for

* inaccessible memory are more fatal than usual this early.

*/

addl $4,%esp

call mi_startup /* autoconfiguration, mountroot etc */

/* NOTREACHED */

addl $0,%esp /* for db_numargs() again */

.....Removed for Brevity.....

/* Allocate Kernel Page Tables */

ALLOCPAGES(NKPT)

movl %esi,R(KPTphys)

/*_*/

/* BEGIN CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

/* Allocate VMX page table */

72

ALLOCPAGES(1)

movl %esi,R(VMXphys)

/*_*/

/* end CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

/* Allocate Page Table Directory */ #ifdef PAE

/* XXX only need 32 bytes (easier for now) */

ALLOCPAGES(1)

movl %esi,R(IdlePDPT)

#endif

.....Removed for Brevity.....

/*

* Write page tables for the kernel starting at btext and

* until the end. Make sure to map read+write. We do this even

* if we’ve enabled PSE above, we’ll just switch the corresponding kernel

* PDEs before we turn on paging.

73

*

* XXX: We waste some pages here in the PSE case! DON’T BLINDLY REMOVE

* THIS! SMP needs the page table to be there to map the kernel P==V.

*/

movl $R(btext),%eax

addl $PAGE_MASK, %eax

andl $~PAGE_MASK, %eax

movl $PG_RW,%edx

movl R(KERNend),%ecx

subl %eax,%ecx

shrl $PAGE_SHIFT,%ecx

fillkptphys(%edx)

/*_*/

/* begin CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

/*map VMXarea */

movl R(VMXphys),%eax

movl $1, %ecx

fillkptphys($PG_RW)

/*_*/

74

/* end CODE ADDED/MODIFIED BY CAPT MEDLEY, USAF */

/*_*/

/* Map page directory. */ #ifdef PAE

movl R(IdlePDPT), %eax

movl $1, %ecx

fillkptphys($PG_RW)

#endif

.....Removed for Brevity.....

B.2 Loadable Kernel Module

This section details the sections of code added to the loadable kernel module

example provided in FreeBSD.

.....Removed for Brevity.....

#include <sys/types.h>

#include <sys/param.h>

#include <sys/proc.h>

75

#include <sys/module.h>

#include <sys/sysent.h>

#include <sys/kernel.h>

#include <sys/systm.h>

#include <sys/malloc.h>

#include "asmtypes.h"

#include <./vmxinst.h>

int rc;

u32 reg_edx;

u32 reg_eax;

u32 ctrl_reg_4;

u32 ctrl_reg_4_post;

u32 vmxmsr_index = 0x480;

u64 onregionphys; u64

*onregion;

u64 *firstvm;

MALLOC_DECLARE(TEMP);

MALLOC_DEFINE(TEMP,"vmcs_struct","4kb for vmcs");

static int hello (struct thread *td, void *arg) {

76

/* set the value of the CR4[13] to 1 */

__asm("movl %%cr4, %%ecx; movl %%ecx, %0; xor $0x2000, %%ecx;

movl %%ecx, %1; movl %%ecx, %%cr4;"

:"=r"(ctrl_reg_4),"=r" (ctrl_reg_4_post) //output

: //input

:"%ecx"

);

printf ("control register 4 was = %u\n now it’s = %u\n",

ctrl_reg_4,ctrl_reg_4_post);

/*read the IA32_VMX_BASIC MSR to get VMX revision id*/

__asm("movl %2, %%ecx; rdmsr; movl %%edx, %0; movl %%eax, %1;"

:"=r"(reg_edx),"=r"(reg_eax) //output

:"r"(vmxmsr_index) //input

: "%ecx","%edx","%eax"

);

// allocate 4kb for vmxon region

onregion = malloc(4096,TEMP, M_NOWAIT);

printf ("edx register = %u \n eax register = %u\n",reg_edx,reg_eax);

/* set the revision ID in the vmxon region */

*onregion = reg_eax;

printf ("the value stored at onregion is %u\n The value of the

onregion pointer is %p\n",(int)*onregion,onregion);

77

//remove the virtual memory off-set

onregionphys = 0x00000000 && ((u32)onregion - 0xC0000000);

//the actual VMXON instruction

if (vmxon(onregionphys)){

printf ("VMX enabled\n");

}

else{

printf ("VMX enabled\n");

}

//allocate the 4kb for the firstvm

firstvm = malloc(4096,TEMP, M_NOWAIT);

//VMCLEAR instruction to initialize the VMCS

vmclear(firstvm);

//VMPTRLD instruction to load the VMCS pointer

vmptrld(firstvm);

//VMLAUNCH instruction to launch the VM

vmlaunch();

return 0;

}

.....Removed for brevity.....

78

Bibliography

1. Abramson, J.; Muthrasanallur S.; Neiger G.; Regnier G.; Sankaran R.; Schoinas
I.; Uhlig R.; Vembu B.; Wiegert J., D.; Jackson. “Intel Virtualization Technology
for Directed I/O”. Intel Technology Journal, 10i3, August 2006.

2. AMD. AMD64 Architecture Programmers Manual Volume 2: System Program-

ming. Advanced Micro Devices (AMD), 3.12 edition, September 2006.

3. AMD. AMD64 Architecture Programmers Manual Volume 3: General-Purpose

and System Instructions. Advanced Micro Devices (AMD), 3.12 edition, Septem-
ber 2006.

4. Anderson, James P. “Computer security technology planning study”. Technical

Report ESD-TR-73-51, II, August 1972.

5. Committee, GCC Steering. “GCC, the GNU Compiler Collection”.
http://gcc.gnu.org, Feb 2007.

6. Dong, S.; Mallick A.; Nakajima J.; Tian K.; Xu X.; Yang F.; Yu, Y.; Li. “Extend-
ing Xen* with Intel Virtualization Technology”. Intel Technology Journal, 10i3,
August 2006.

7. Hoglund, Greg and James Butler. Rootkits: Subverting the Windows Kernel.
Addison Wesley, 2006.

8. Intel. “Intel vPro Technology White Paper”. Intel website.

9. Intel. Intel Virtualization Technology Specification for the IA-32 Intel Architec-

ture. Intel, April 2005.

10. Intel. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 3A:

System Programming Guide, Part 1. Intel, November 2006.

11. Intel. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 3B:

System Programming Guide, Part 2. Intel, November 2006.

12. Karger, Roger R., Paul A.; Schell. “Multics Security Evaluation: Vulnerability
Evaluation”. Technical Report ESD-TR-74-193, II, August 1974.

13. King, Samuel T. ; Chen Peter M. “SubVirt: Implementing malware with virtual
machines”.

14. McAfee. “Rootkits, Part 1 of 3: The Growng Threat”. 2006.

15. Nick L. Petroni, Timothy Fraser Jesus Molina, Jr. and William A. Ar-
baugh. “Copilot–a Coprocessor-based Kernel Runtime Integrity Mon-
itor”. 13th USENIX Security Symposium, 179–194, 2004. URL
http://www.usenix.org/events/sec04/tech/petroni.html.

79

16. Rodrigues, Craig. “Kernel compilation errors with GCC 4.0”.
http://lists.freebsd.org/pipermail/freebsd-current/2005-May/050524.html,
May 2005.

17. Rodrigues, Craig. “Xensource,Delivering the Power of Xen”.
http://www.xensource.com, February 2007.

18. Rutkowska, Joanna. “Introducing Stealth Malware Taxonomy”. November 2006.

19. Williams, Paul D. CUPIDS: Increasing Information System Security through the

use of Dedicated Co-Processing. Ph.D. thesis, Purdue University, August 2005.

80

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2007 Master’s Thesis May 2005 — Mar 2007

Hardware Virtualization
Applied to Rootkit Defense

Douglas P. Medley, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management(AFIT/EN)
2950 Hobson Way, Bldg 640
WPAFB OH 45433-7765

AFIT/GCE/ENG/07-08

AFRL/SN(AT-SPI)
Attn: Robert W. Bennington
2241 Avionics Cir
WPAFB, 45433-7320
(937)320-9068

Approved for public release; distribution is unlimited

This research effort examines the idea of applying virtualization hardware to enhance operating system security against
rootkits. Rootkits are sets of tools used to hide code and/or functionality from the user and operating system. Rootkits
can accomplish this feat through using access to one part of an operating system to change another part that resides at
the same privilege level. Hardware assisted virtualization (HAV) provides an opportunity to defeat this tactic through
the introduction of a new operating mode. Created to aid operating system virtualization, HAV provides hardware
support for managing and saving multiple states of the processor. This hardware support overcomes a problem in pure
software virtualization, which is the need to modify guest software to run at a less privileged level. Using HAV, guest
software can operate at the pre-HAV most privileged level. This thesis provides a plan to protect data structures
targeted by rootkits through unconventional use of HAV technology to secure system resources such as memory. This
method of protection will provide true real-time security through OS attack prevention, rather than reaction.

hardware based software security, rootkit defense, virtualization

U U U UU 92

Maj Paul Williams, PhD

(937) 255–3636, ext 7253

